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Abstract. We present an algorithm for recursively calculating coupling, recoupling, induc- 
tion and similar coefficients in terms of the primitive coefficients. The algorithm is shown 
to be complete for any compact group. We use the 6- j  symbol as an example for describing 
our algorithm, but the algorithm applies to a wide class of group theoretic transformation 
factors. 

1. introduction 

Group theory is of significant interest to physicists as a way of examining the symmetry 
of a system. The coupling of states for a particular group-subgroup pair to produce 
a new state introduces us to coupling coefficients and their associated recoupling 
coefficients. In a similar fashion, the induction of a subgroup into a group leads to 
the induction and reinduction factors (see Haase and Butler 1984). Finally the transfor- 
mation from one lineal descent of subgroups of a group to a different set of subgroups 
requires knowledge of transformation coefficients. Hence it is useful to have a com- 
pletely general method of calculating the values of the various symmetrising factors 
for any group. At present no complete algorithm exists that is applicable to all the 
point groups and to all the classical Lie groups, even for 6-j and 3-jm. 

Much of the recent work on particular groups has been for relatively simple 
multiplicity-free cases (see Judd 1986, 1987, Judd et a1 1986, Haase and Dirl 1986) 
involving couplings of a small faithful irrep, which we shall call the primitive irrep. 
We will show that it is possible to calculate recursively any of the above factors for 
any other coupling, induction, recoupling or like process, in terms of the corresponding 
primitive coefficients. We prove the completeness of the algorithm, and show that it 
is unaffected by any multiplicity that occurs. The present algorithm reduces the problem 
of calculating a set of transformation factors to the problem of calculating the primitive 
factors. The primitive 6- j  occur in the recursion relations for non-primitive 6-j  and 
3-jm and will be considered in a forthcoming paper. 

In 0 2 we will define the conventions and equations that are required (see, e.g., 
Butler 1981, Bickerstaff et al 1982) and give a short review of an earlier more restricted 
algorithm for 6 9  and 3-jm symbols. In 0 3 we will describe our algorithm for a 
particular case, the 6-j symbol, and in § 4 we comment on the application of our 
algorithm to other kinds of transformation factors. 
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2. Definition and review 

A review of the coupling coefficients for an arbitrary compact group can be found in 
Butler (1975) and an introduction to induction factors in Haase and Butler (1984). In 
their earlier algorithm for calculating 6-j and 3-jm Butler and Wybourne (1976) defined 
a few terms that we will also use. The primitive irrep E is any low-dimension faithful 
irrep of the group that we choose for the role of being the pivotal irrep for the recursive 
building u p  of transformation factors. With respect to such a choice, the power p ( A )  
of a general irrep A, is defined as the smallest value of k such that ( E  + E * ) ~  2 A. One 
has p ( A * ) = p ( A ) .  An irrep A is considered to be less than another p if p ( A ) < p ( p ) .  

We recall that a triad consists of three irreps A I ,  h 2 ,  h3 and a multiplicity index r, 
where the triad exists if the triple product A ,  x h2 x A 3  contains at least r copies of the 
scalar irrep. We will use n A , h 2 A 3  for the maximum value of r for which the triad exists. 
A trivial triad is one where one of the irreps is the scalar. Similarly a primitive triad 
is one that contains the primitive irrep E (or E * ) .  No further distinction is made 
between the triads here, although it can be done. We will often use the symbol ;i to 
denote any irrep such that both p ( 1 )  = p ( A )  - 1 and the triad A X E r  exists for r = 1. 

A trivial o r  primitive 6-j or 3-jm symbol is defined as one which contains a trivial 
o r  primitive triad, and hence the scalar or  primitive irrep. (For 3-jm symbols, we are 
only concerned with the nature of the group triad, not the subgroup triad.) In the rest 
of this paper we will only consider the calculation of those symbols that are neither 
primitive nor trivial, i.e. ones which are composed only of general irreps. 

Butler and  Wybourne (1976) proposed a method for recursively calculating 3-jm 
and  6-j symbols of this non-primitive type. They combined the orthogonality equation 
for the symbol with either the Wigner equation (for 3-jm) or the Biedenharn-Elliott 
equation (for 6-j) in such a way that a general symbol was written as a product of 
other general symbols whose smallest irrep was one power smaller than the smallest 
in the original. For example, the Wigner equation was modified to 

In this way it was possible to recurse, with successive steps reducing the power of the 
smallest irrep until it was of power one. At this point the unknown symbol became a 
product of primitive ones, and  no further recursion by this method was possible. The 
disadvantage of this is the extra sum over irrep p when compared to the unmodified 
equation. This meant that although one irrep is being reduced, another irrep of the 
group is growing at the same rate (and hence the size of irreps that are branched to 
is also on the increase for the 3-jm) so that a fairly small general symbol required 
knowledge of the value of some fairly large primitive symbols to be able to get an  answer. 
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3. Improved algorithm for 6-j symbols 

For the purpose of calculating a 6-j, we arrange our unknown general 6 - j  by application 
of the various symmetries so that the smallest irrep is in the top right-hand corner of 
the 6-j. Denoting the 6 - j  in this arrangement as 

we may use the Biedenharn-Elliott sum rule to give sufficient linearly independent 
linear equations for a set of such 6 %  so that we may solve for all nA,A,A, values of r. 
We choose the coefficients for these nAlAlA3 unknown 6- j  to be the primitive 6 - j  of the 
form 

The Biedenharn-Elliott sum rule in the absence of mixed symmetry couplings (which 
in no way affect this algorithm) and with these coefficients is then 

sI .szyJr  

= C I A I { ~ I } { P I } ~ I I E * ~ ~ I } { ~ T ~ ~ ~ * S Z } { E ~ ~ ~ ~ S ~ )  
A 1 1 1 2 f 3  

{A*Plh3tl}{A11~Ef~}{APT vt31 

For the point groups and for the classical Lie groups no multiplicity occurs for 
any primitive triad given the usual choice of E ,  except in non-stretched couplings of 
the type E x A = p, where p ( A )  = p ( p ) .  Non-stretched primitive couplings occur only 
for a few groups. The first 6-j  on the right-hand side involves X 3  and thus may be 
regarded as preceding the unknown 6-j  (which has A 3  as its smallest entry), and the 
other two 6 - j  are primitive. This equation may be used recursively to reduce the power 
of the smallest irrep by one in the non-primitive 6 - j  until 1, is of power one, and then 
all 6- j  on the right-hand side are primitive. 

If the multiplicity nAlA2A3 is greater than one, then we have more than one unknown 
6-j. It is always possible to select sufficient values of s,, s2 and v, to create n,,,A2,+, 
linearly independent equations which can be solved for the set of unknown 6-j. The 
proof of this is given in the following paragraph. 

The set of 6-j  in (3.2) formed by varying A3s3r as a row index and vs1s2 as a column 
index forms a square matrix with elements S::li:2r, since it is related by a column 
interchange to the unitary matrix R of recoupling coefficients (Butler 1975, equation 
(9.13)). 

R",::: = ( ( A  I E * ) S ,  v*, i3, s2A? \ A  ( ch3)s3A3 rh?) .  (3.4) 

This unitarity is expressed by the orthonormality equations for 6 - j  
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obtained, for example, from Butler (1975, equation (9.11)) by a row flip. The con- 
sequence of this is that Ŝ ,a1':: is a non-singular square matrix, which implies that its 
columns are linearly independent. Hence a subset of rows for fixed A s  and s3, a subset 
with nhlh2h3 numbers, can be found that are linearly independent. The part of the 
matrix S that we are using has n h l h 2 h 3  linearly independent rows, and so varying the 
indices v ls l  and s2 over the appropriate range will always give sufficient linear equations 
to allow the unknown 6-j  of (3.1) to be solved. 

Often the range of v can be restricted, so as not to use all terms in the product 
E x A l .  For example, one can usually, but not always, restrict v to being i?. This 
restriction is where our method has an advantage over that due to Butler and Wybourne 
(1976) who used the orthogonality of the 6-j  to rewrite (3.3) in cases with multiplicity. 
Our algorithm only uses a few of the possible values of v to solve all nh,h2A3 unknown 
6-j, whilst their algorithm effectively required a sum over all values of v for each of 
the unknown 6-j. The maximum power of A that occurs in (3.3) is p ( p J  + 1 since it 
occurs in the triad ( A P T & ) ,  whereas with the previous algorithm two summations occur 
with maximum powers of p ( p l )  + 1 and p ( p J  + 1 respectively. We therefore note that 
the most efficient use of equation (3.3) occurs when the unknown 6-j (3.1) is arranged 
so that the smallest of the irreps hlA2plp2 is p2 .  The largest possible term on the 
right-hand side of (3.3) is then the 6-j  with powers 

P ( A J  p(hl1-11. ["blps P(PJ + 1 P(P3) 

The study of this algorithm was initiated by a request from Hamer (see Hamer et 
a1 1986) for 6-j of SU3 beyond those of previously published tables (see Haase and 
Butler 1985, Bickerstaff et a1 1982 and references therein). In calculating these 6-j of 
up to power 5 it became apparent that the algorithms we were using were not very 
efficient, and could be improved. 

4. Applying the algorithm to other transformation factors 

The algorithm presented can be applied to a variety of symbols that obey an orthornor- 
mality condition and which obey an equation involving the product of a factor and 
another equation being equal to a sum over three others. The Wigner equation for 
3-jm symbols of a group G restricted to a subgroup H, 

= 1 ( P 1 h l  pI h TpT ( p2) h2p2 h T p r  ( P3 h3p3 h Spz 
~ I P I ~ P ~ ~ ~ P ~ Y I  ~ 2 ~ 3  

A 1  PLT 

(4.1) 

is a typical example of this type of equation. In fact the Biedenharn-Elliott equation 
is rather atypical since the coefficient of the 6-j on the left-hand side is itself a 6-j. 
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If the unknown 3-jm in this equation is arranged so that A 3  is the smallest of the 
irreps in the group triad h,hZh3r4, then the 6-j  for the group G that we use as coefficients 
are identical to those in (3.2). We note that the 6-j on the right-hand side of equation 
(4.1) is a 6-j for the subgroup H and for the present calculation may be regarded as 
a set of known quantities. The algorithm then proceeds recursively as before, with the 
eventual result being a dependence of the unknown on primitive 3-jm. 

The method can also be applied directly to the induction factors since they obey 
a relation very similar to the relation between coupling and recoupling coefficients 
that leads to the Wigner equation (see Haase and Butler 1984, equation (5.7)). The 
reinduction factors that occur with the induction factors are very similar to recoupling 
factors and obey a relation very similar to the Biedenharn-Elliott equation. As a result 
it is trivial to apply the present algorithm to get a general induction (or reinduction) 
factor in terms of primitive induction (reinduction) factors. 

5. Conclusion 

The algorithm of Butler and Wybourne (1976) for calculating all vector coupling and 
recoupling coefficients for any compact group in terms of primitive coupling coefficients 
has been substantially improved for cases with coupling multiplicity. The algorithm 
has also been shown to apply quite generally to a wide category of transformation 
factors including the induction factors of Haase and Butler (1984). Being able to solve 
all general factors in terms of the primitive factors leaves us with the problem of solving 
the primitive factors. Such a calculation requires that certain phase and multiplicity 
choices be made. 
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